加气混凝土浇筑步骤 加气砖高温浇筑注意事项?

[更新]
·
·
分类:家装
2264 阅读

加气混凝土浇筑步骤

加气砖高温浇筑注意事项?

加气砖高温浇筑注意事项?

砌筑之前需要适量的洒水湿润,因为加气混凝土砌块的吸水率比较的高,洒水如果少了可能会造成砂浆。
在砌筑的过程中一般水平灰缝的饱满度基本能够达到百分之九十,但是在立缝的方面很难保证其饱满度会达到百分之八十,在很多的情况下工人都会做假缝处理。由于混凝土加气块的强度比较低,所以很容易会造成出现裂缝,如果这种砖上墙的话会造成抹灰面的开裂,从而影响美观。
如果直接在墙体的底部进行加气混凝土砌块的砌筑,特别容易造成墙体底部的吸水,从而会形成毛细现象,使得装饰层面会出现粉化脱落,这些都是需要注意的。

蒸压加气块丁字墙砌法

蒸压加气块丁字墙处断开留马牙槎浇注构造柱。

加气块卫生间墙怎么砌?

卫生间等潮湿房间应采用经防水处理的精确砌块(可满涂防水界面剂处理),第一皮砌块下部应设不低于防水高度要求混凝土导墙或现浇钢筋混凝土楼板翻边(防水高度大于 300 允许二次浇注)。

金品加气块做法?

包括以下重量份原料:黄金尾矿400~450份、脱硫石膏17~19份、水泥80~100份、石灰80~100份、铝粉0.5~0.6份、香蕉茎杆纤维10~30份、蟹壳3~5份、聚丙稀铣胺1~3份、硅土4~6份、竹炭40~60份。
进一步的,所述黄金尾矿412份、脱硫石膏18份、水泥90份、石灰90份、铝粉0.55份、香蕉茎杆纤维20份、蟹壳4份和聚丙稀铣胺2份、硅土5份、竹炭50份。
本发明还提供一种的黄金尾矿蒸压加气混凝土砌块的生产工艺,包括以下步骤:
S1、将香蕉茎杆纤维粉碎至50~100目;
S2、将蟹壳用盐水浸泡,后烘干、粉碎,得蟹壳粉;
S3、将黄金尾矿、脱硫石膏、香蕉茎杆纤维、竹炭、硅土加入搅拌池,注入水,经充分搅拌,制成密度为1.50~1.60g/cm的原料浆;
S4、将水泥、石灰、铝粉、蟹壳粉、聚丙稀铣胺依次加入步骤S3的原料浆,加入外加水,充分搅拌,再通入高温水蒸气,温度达到46~48℃时,浇注到模框内;
S5、静停1.5~2.5h,静停后进行切割;
S6、将步骤S5切割好的坯体送入1.2~1.3MPa蒸压釜内,恒温蒸压6~9h,得到加气混凝土砌块。
进一步的,步骤S2中,所述盐水的质量浓度为4~6%NaCl溶液,浸泡时间为1~2h。
进一步的,步骤S4中,所述外加水使用重量份为20~100份。
进一步的,步骤S4中,所述高温水蒸气的温度为100~130℃。
进一步的,步骤S6中,所述蒸压温度为190~210℃。
与现有技术相比,本发明的有益效果是:本发明利用聚丙稀铣胺和硅土将各组分进行有效整合,使得各组分相互作用后形成空间网状结构,提高混凝土砌块的各方面性能,再利用废弃香蕉茎杆制得的香蕉茎杆纤维与上述空间网状结构起到协同作用,进一步强化产品的性能,利用废弃物中蟹壳的钙成分,进一步增强性能;添加竹碳粉,进一步增加产品的孔隙度,增强产品的强度;本发明的废渣黄金尾矿代替沙子,减少采沙对环境的破坏,且有效增强产品的性能;本发明的脱硫石膏参加水泥的水化反应,调节水泥的凝结时间,防止水泥发生快凝现象;本发明的石灰提供有效氧化钙,进一步提高产品的强度;本发明的铝粉在料浆中进行化学反应,放出气体形成细小而均匀的气泡,进一步促进产品形成多孔结构,提高材料轻盈并具有较高的强度。本发明的生产工艺进一步提高产品性能。
具体实施方式
以下对本发明的原理和特征进行描述,所举实施例只用于解释本发明,并非用于限定本发明的范围。
实施例1
一种黄金尾矿蒸压加气混凝土砌块,包括以下重量份原料:黄金尾矿400份、脱硫石膏17份、水泥80份、石灰80份、铝粉0.5份、香蕉茎杆纤维10份、蟹壳3份、聚丙稀铣胺1份、硅土4份、竹炭40份。
实施例2
一种黄金尾矿蒸压加气混凝土砌块,包括以下重量份原料:黄金尾矿450份、脱硫石膏19份、水泥100份、石灰100份、铝粉0.6份、香蕉茎杆纤维30份、蟹壳5份、聚丙稀铣胺3份、硅土6份、竹炭60份。
实施例3
一种黄金尾矿蒸压加气混凝土砌块,包括以下重量份原料:黄金尾矿412份、脱硫石膏18份、水泥90份、石灰90份、铝粉0.55份、香蕉茎杆纤维20份、蟹壳4份、聚丙稀铣胺2份、硅土5份、竹炭50份。
上述实施例1~3的黄金尾矿蒸压加气混凝土砌块的生产工艺,包括以下步骤:
S1、将香蕉茎杆纤维粉碎至80目;
S2、将蟹壳用盐水浸泡,所述盐水的质量浓度为5%NaCl溶液,浸泡时间为1.5h,后烘干、粉碎,得蟹壳粉;
S3、将黄金尾矿、脱硫石膏、香蕉茎杆纤维、竹炭、硅土加入搅拌池,注入水,经充分搅拌,制成密度为1.55g/cm的原料浆;
S4、将水泥、石灰、铝粉、蟹壳粉、聚丙稀铣胺依次加入步骤S3的原料浆,加入重量份为50份外加水,充分搅拌,再通入约为120℃的高温水蒸气,温度达到47℃时,浇注到模框内;
S5、静停2h,静停后进行切割;
S6、将步骤S5切割好的坯体送入1.2MPa蒸压釜内,蒸压温度为200℃,恒温蒸压8h,得到加气混凝土砌块。
实施例4
本实施例与实施例3的区别在于,所述黄金尾矿蒸压加气混凝土砌块的生产工艺,包括以下步骤:
S1、将香蕉茎杆纤维粉碎至50目;
S2、将蟹壳用盐水浸泡,所述盐水的质量浓度为4%NaCl溶液,浸泡时间为1h,后烘干、粉碎,得蟹壳粉;
S3、将黄金尾矿、脱硫石膏、香蕉茎杆纤维、竹炭、硅土加入搅拌池,注入水,经充分搅拌,制成密度为1.50g/cm的原料浆;
S4、将水泥、石灰、铝粉、蟹壳粉、聚丙稀铣胺依次加入步骤S3的原料浆,加入重量份为20份外加水,充分搅拌,再通入约100℃的高温水蒸气,温度达到46℃时,浇注到模框内;
S5、静停1.5h,静停后进行切割;
S6、将步骤S5切割好的坯体送入1.2MPa蒸压釜内,蒸压温度为190℃,恒温蒸压9h,得到加气混凝土砌块。
实施例5
本实施例与实施例3的区别在于,所述黄金尾矿蒸压加气混凝土砌块的生产工艺,包括以下步骤:
S1、将香蕉茎杆纤维粉碎至100目;
S2、将蟹壳用盐水浸泡,所述盐水的质量浓度为6%NaCl溶液,浸泡时间为2h,后烘干、粉碎,得蟹壳粉;
S3、将黄金尾矿、脱硫石膏、香蕉茎杆纤维、竹炭、硅土加入搅拌池,注入水,经充分搅拌,制成密度为1.60g/cm的原料浆;
S4、将水泥、石灰、铝粉、蟹壳粉、聚丙稀铣胺依次加入步骤S3的原料浆,加入重量份为100份外加水,充分搅拌,再通入约为130℃的高温水蒸气,温度达到48℃时,浇注到模框内;
S5、静停2.5h,静停后进行切割;
S6、将步骤S5切割好的坯体送入1.3MPa蒸压釜内,蒸压温度为210℃,恒温蒸压6h,得到加气混凝土砌块。
对比例1
一种黄金尾矿蒸压加气混凝土砌块,包括以下重量份原料:黄金尾矿412份、脱硫石膏18份、水泥90份、石灰90份。
上述的黄金尾矿蒸压加气混凝土砌块的生产工艺,包括以下步骤:
S1、将黄金尾矿、脱硫石膏加入搅拌池,注入水,经充分搅拌,制成密度为1.55g/cm的原料浆;
S2、将水泥、石灰、铝粉依次加入步骤S3的原料浆,加入重量份为50份外加水,充分搅拌,再通入约为120℃的高温水蒸气,温度达到47℃时,浇注到模框内;
S3、静停2h,静停后进行切割;
S4、将步骤S5切割好的坯体送入1.2MPa蒸压釜内,蒸压温度为200℃,恒温蒸压8h,得到加气混凝土砌块。
对比例2
本对比例与实施例3的区别在于,在步骤S1中,将香蕉茎杆纤维粉碎至30目;另外,在步骤S2中,所述蟹壳用清水浸泡,浸泡时间为1.5h,后烘干、粉碎,得蟹壳粉。
对比例3
本对比例与实施例3的区别在于,制备所述黄金尾矿蒸压加气混凝土砌块包括以下步骤:
S1、将香蕉茎杆纤维粉碎至80目;
S2、将蟹壳用盐水浸泡,所述盐水的质量浓度为5%NaCl溶液,浸泡时间为1.5h,后烘干、粉碎,得蟹壳粉;
S3、将黄金尾矿、脱硫石膏、香蕉茎杆纤维、竹炭、聚丙稀铣胺加入搅拌池,注入水,经充分搅拌,制成密度为1.55g/cm的原料浆;
S4、将水泥、石灰、铝粉、蟹壳粉、硅土依次加入步骤S3的原料浆,,加入重量份为50份外加水,充分搅拌,再通入约为120℃的高温水蒸气,温度达到47℃时,浇注到模框内;
S5、静停2h,静停后进行切割;
S6、将步骤S5切割好的坯体送入1.2MPa蒸压釜内,蒸压温度为200℃,
恒温蒸压8h,得到加气混凝土砌块。
将上述实施例1~5以及对比例1~3制得加气混凝土砌块进行检测,测试结果如下:
上述测试结果表明,本发明实施例1~5制得的加气混凝土砌块的抗压强度、体积密度、干燥收缩性、抗冻性、导热系数各性能佳,具有较好的隔热、保温性能,材质轻盈,抗压、抗冻、抗震能力强。
对比例1与实施例3对比可知,对比例1制得的加气混凝土砌块抗压强度、体积密度、干燥收缩性、抗冻性、导热系数各性能虽然基本合格,但远远不如实施例3,表明本发明的科学配方,较大提高了产品的性能,尤其是提高其抗压能力以及抗冻性,其中,本发明利用聚丙稀铣胺和硅土将各组分进行有效整合,使得各组分相互作用后形成空间网状结构,提高混凝土砌块的各方面性能,再利用废弃香蕉茎杆制得的香蕉茎杆纤维与上述空间网状结构起到协同作用,强化产品的性能,利用废弃物中蟹壳的钙成分,增加强度;添加竹碳粉,进一步增加产品的孔隙度,增强产品的强度;本发明的铝粉在料浆中进行化学反应,放出气体形成细小而均匀的气泡,进一步促进产品形成多孔结构,提高材料轻盈并具有较高的强度。
对比例2与实施例3对比可知,对比例2制得的加气混凝土砌块抗压强度、体积密度、干燥收缩性、抗冻性、导热系数各性能均比实施例3差,表明采用本发明的香蕉茎杆纤维和蟹壳的预处理方式,能够使得香蕉茎杆纤维与其他原料形成的空间网状结构起到更好的协同作用,而且可以更充分利用蟹壳中的有效成分,使得后期制得产品性能更佳。
对比例3与实施例3对比可知,对比例3制得的加气混凝土砌块抗压强度、体积密度、干燥收缩性、抗冻性、导热系数各性能均比实施例3较差,表明本发明的工艺参数对产品的性能有较大的影响,其中,本发明利用原料浆中硅土促进水泥、石灰、铝粉、蟹壳粉的高效混合,利用聚丙稀铣胺促进香蕉茎杆纤维、竹炭与上述原料的交融。采用本发明的生产工艺,进一步提高产品的隔热、保温、抗压、抗冻、抗震等性能。
综上所述,本发明制得的加气混凝土砌块在抗压强度、体积密度、干燥收缩性、抗冻性、导热系数等方面性能优良,具有较好的隔热、保温性能,材质轻盈,抗压、抗冻、抗震能力强。其中,本发明利用聚丙稀铣胺和硅土将各组分进行有效整合,使得各组分相互作用后形成空间网状结构,提高混凝土砌块的各方面性能,再利用废弃香蕉茎杆制得的香蕉茎杆纤维与上述空间网状结构起到协同作用,进一步强化产品的性能,利用废弃物中蟹壳的钙成分,进一步增强性能;添加竹碳粉,进一步增加产品的孔隙度,增强产品的强度;本发明的废渣黄金尾矿代替沙子,减少采沙对环境的破坏,且有效增强产品的性能;本发明的脱硫石膏参加水泥的水化反应,调节水泥的凝结时间,防止水泥发生快凝现象;本发明的石灰提供有效氧化钙,进一步提高产品的强度;本发明的铝粉在料浆中进行化学反应,放出气体形成细小而均匀的气泡,进一步促进产品形成多孔结构,提高材料轻盈并具有较高的强度。本发明的生产工艺进一步提高产品性能。